ACTIVATION OF C-H BONDS IN SATURATED HYDROCARBONS. THE FORMATION OF BIS-(TRIPHENYLPHOSPHINE)(n-ALKADILNE)RHENIUM TRIHYDRIDES FROM n-ALKANES, AND THEIR SELECTIVE CONVERSION INTO THE CORRESPONDING 1-ALKENES

Denise Baudry," Michel Ephritikhine," Hugh Felkin, and Janusz Zakrzewski

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette, France.

Summary.- n-Alkanes (C_6-C_8) react at 70°C with bis(triphenylphosphine)rhenium heptahydride and 3,3-dimethylbutene to afford equilibrium mixtures of the corresponding bis(triphenylphosphine)(n-conjugated-diene) rhenium trihydrides; treatment of these mixtures with trimethylphosphite at 60°C converts them, in >95% yield and with >98% selectivity, into the corresponding 1-alkenes.

The chemistry of n-alkanes is limited, and the few reactions they undergo (with radical reagents and electrophiles) are generally rather unselective. n-Pentane has, however, recently been converted into the (n-pentadiene)rhenium trihydride ζ , and the reaction of this with trimethylphosphite affords 1-pentene in 95% yield (Scheme 1).¹ Here we report the functionalisation of the higher n-alkane homologues $4a-c$.

Scheme 1. The selective functionalisation of n-pentane.

Whereas $\frac{3}{2}$ is the only (η -conjugated-<u>trans</u>-diene)rhenium trihydride which can be formed from n-pentane, n-hexane 4a and n-heptane 4b can each give two isomers [$5a$ ($\equiv 7a$) and $6a$, and $5b$ and $6b$ ($\equiv 7b$)], and n-octane $4c$ can give three ($\frac{5c}{5c}$, $\frac{6c}{5c}$, $\frac{7c}{5c}$). In the event, this is exactly what occurred (Scheme 2). When the heptahydride $\frac{1}{2}$ (50 mg) and 3,3-dimethylbutene $\frac{2}{6}$ (90 $\scriptstyle\rm \mu 1)$ were heated at 70°C in n-hexane (16 ml) for 40 minutes under nitrogen, the heptahydride 1 gradually dissolved to afford an amber solution; evaporation of the excess n-hexane left a residue containing a ca 2:1 mixture of the $(n$ -hexadiene)rhenium trihydrides 5g and 6g (55-60% yield by nmr).⁴ Similar mixtures of 5g and $6a$ were formed when 1 was refluxed in THF with a variety of isomeric hexadienes."' In the same way, n-heptane, $\frac{1}{\sqrt{2}}$ and $\frac{2}{\sqrt{2}}$ at 70°C gave a ca 1:1 mixtur

Scheme 2. (n-Diene)rhenium trihydrides formed from n-alkanes, and their conversion into 1-alkenes. $R = a$, H; b, Me; c, Et

of ξ) and ξ) (65-70% yield by nmr)^{4,7} and n-octane gave a <u>ca</u> 2:2:1 mixture of $\overline{\xi}$, $\overline{\xi}$, $\overline{\xi}$ and $\overline{\zeta}$ (70-80% yield by nmr); the same mixture of $\overline{\xi}$, $\overline{\xi}$ and $\overline{\zeta}$ was obtained (75% yield) from 1,7-octadiene and 1 in THF. $4,6$ The n-alkanes 4 thus lead in all cases to mixtures, in approximatively statistical proportions, of all the possible (n-conjugated-trans-diene)rhenium trihydride isomers \S , \S and 7 .

These mixtures of (n-diene)rhenium trihydrides were converted in high yield, and with high selectivity, into the corresponding 1-alkenes. Thus, when the 2:1 mixture of $\frac{5a}{9a}$ and $\frac{6a}{98}$ (98 mg) was heated at 60°C for 1 hour with trimethylphosphite (0.5 ml) , 1-hexene $g_{\mathcal{R}}$ was formed in >95% yield and >98% selectivity (by $g.c.$). The crude mixture of $\zeta_{\mathcal{R}}$ and $\zeta_{\mathcal{R}}$ obtained from n-hexane also gave 1-hexene $(>95\%$ pure by g.c.). 1-Heptene $\mathrm{\&}$ was the major $\mathrm{product}$ $(\underline{\mathsf{ca}}$ $95\%)$ * formed from the crude mixture (1:1) of ζ **b** and ζ **b**, and the 2:2:1 mixture of ζ **c**, $\delta \mathcal{L}$ and $\delta \mathcal{L}$ gave 1-octene $\delta \mathcal{L}$ in >95% yield (by g.c.) and >98% selectivity (by nmr).¹⁰ We do not understand the reasons for this remarkably regioselec formation of 1-alkenes by treatment of ζ and the mixtures of ξ , ζ and ζ with trimethylphosphite;¹¹ ζ also reacted with other phosphites $[(Et0)_{3}P, (Ph0)_{3}P]$ to give a mixture of n-pentane and 1-pentene, and the reaction of ζ with CO or $\text{(CH}_3)$ ₂CHCN led to the formation of mixtures of pentane and all the pentenes.

The virtually quantitative formation of 1-alkenes from the mixtures of isomers 5 , 6 and 7 suggested, however, that these isomers are interconverting in solution. We have confirmed, by 1 H nmr spin saturation transfer (SST), that this rearrangement does indeed occur in the case of the (n-hexadiene)rhenium trihydrides $\sum a_i$ and $\sum a_i$, 1^2 and we have studied it in more detail in the case of the (n-pentadiene)rhenium trihydride $\bar{\lambda}$, where it is degenerate ($\bar{\lambda} = \bar{\lambda}$ ', Scheme 3). This trihydride is in mobile equilibrium at 40° C with the $(n-aly1)$ rhenium dihydrides Q and 10 , and 2 and $3'$ are rapidly interconverted at 80°C. 4 possible mechanism for this rearrangement, via the symmetrical n-ally1 intermediate 11 , is shown in Scheme 3.

Because of this equilibrium between the (n-diene) rhenium trihydrides $\overline{\lambda}$, $\overline{\lambda}$ and 7 , we cannot tell where in the n-alkane the initial activation of a C-H

Scheme 3. Possible mechanism for the degenerate rearrangement of the (n-pentadiene)rhenium trihydride $\bar{\lambda}$ (= $\bar{\lambda}$ ^t). L = Ph₃P.

bond takes place. We imagine, however, that it occurs preferentially on a methyl group, $^{\text{13}}$ and that it involves the carbene-like insertion of a coord natively unsaturated complex [possibly the 14e trihydride $(\text{Ph}_{\texttt{z}}\text{P}){\,}_{2}$ ReH $_{3}$]. 14 We think the $(n-alky1)$ rhenium intermediate thus formed undergoes β -elimination to afford an 18e (n-1-alkene) rhenium pentahydride, which can either lose olefin or suffer further dehydrogenation to lead ultimately to the (n-diene)rhenium trihydride.

Whereas loss of olefin seems to be the major pathway in the case of cycloalkanes^{2,15} (except cyclopentane),¹⁴ leading to their catalytic dehydrogenation, 13 it is only a very minor reaction in the case of n-alkanes. We assume that steric compression destabilises intermediates incorporating the bulkier cycloalkenes, and that these therefore dissociate rapidly before further dehydrogenation can occur.¹⁵

Although a number of soluble transition metal systems are now known which activate C-H bonds in saturated hydrocarbons, 1b the one described above is, to our knowledge, the first which leads to the functionalisation of the terminal carbon of n-alkanes in fair yield (60-808 based on rhenium) and with high (> 98%) regioselectivity.

References and Footnotes ___-

1. (a) D. Baudry, M. Ephritikhine, H. Felkin, and J. Zakrzewski, J.Chem.Soc., Chem.Commun., 1982, 1235; (b) For references to other recent work on the activation of C-H bonds in saturated hydrocarbons by soluble transition metal systems, see accompanying communication.²

2. Accompanying communication: H. Felkin, T. Fillebeen-Khan, Y. Gault, R. Holmes-Smith, and J. Zakrzewski, Tetrahedron Letters, 1984, 25,

```
3. J. Chatt and R.S. Coffey, J.Chem. Soc.A, 1969, 1963.
```
- 4. 400 MHz ¹H nmr spectra in C_6D_6 , δ from TMS. All the (n-diene)rhenium trihydrides $5-7$ show phenyl resonances between 7 and 8.5, and two broad hydride resonances at about -3 and -7. Diene ligands (all the signals are multiplets; the methyl signals are doublets or triplets, $J = 6-7$ Hz): $\frac{5a}{6}$, -0.80 (H1 anti), 2.25 (Hl syn), 3.92 (HZ), 3.45 (H3), -0.40 (H4), **1.99** and 1.56 (H5 and H5'), 0.75 t (H6); βa , 1.74 d (H1 and H6), -0.30 (H2 and H5), 3.58 (H3 and H4); βb , -0.74 (Hl anti), 2.30 (Hl syn), 3.98 (H2), 3.45 (H3), -0.39 (H4), 2.03 and 1.52 (H5 and H5'), 1.11 (H6), 0.74 t (H7); $\oint_{\mathbb{R}}$, 1.75 d (H1), -0.23 (H2), 3.58 (113 and H4), -0.39 (H5), 2.03 and 1.64 (H6 and H6'), 0.81 t (H7); the spectrum of the mixture of $\xi \xi$, $\xi \xi$ and $\zeta \xi$ resembles that of the lower homologues, but is more complex, with overlapping signals; the spectrum in CD_2Cl_2 , however, clearly shows four methyl signals of approximatively equal intensities at 1.36 d (H1 in (g_K) , 0.67 t (H1 and H8 in (g_K) and 0.57 t and 0.56 t (H8 in g_K) and H8 in (gg) .
- 5. cis-1,4-, trans,trans-2,4-, cis-trans-2,4- and 1,5-hexadiene; the latter gave the best isolated yield (75%).
- 6. For the preparation of (n-diene)rhenium trihydrides by this route, see D. Baudry, M. Ephritikhine, and H. Felkin, J.Organometal.Chem., 1982, 224, 363. -
- 7. The mixture of $5h$ and $6h$ was not isolated and purified.
- 8. Identified by g.c-m.s. We thank Mr. J.M. Dedieu (Orsay) for this analysis.
- 9. 1-Heptene was identified by its g.c. retention time only (SE30 silicone column); the only visible contaminant had the retention time of n-heptane. 10. The presence of >2% of any of the isomeric octenes would have been easily detected in the 400 MHz 1 H nmr spectrum.
- 11 . Similar, but much less pronounced, selectivity in favour of 1-alkene formation from (n-allyl)-copper and -nickel precursors has been observed previously, and explained by the greater stability, and hence rate of formation, of (n-lalkene)metal intermediates. J.K. Kochi and H.E. Mains, J.Org.Chem., 1965, 30, 1862; C. Chuit, H. Felkin, C. Frajerman, G. Roussi, and G. Swierczewski, J.Organometal.Chem., 1977, 127, 371.
- 12. Irradiation of the signal corresponding to the methyl groups of 6g in the 250 MHz spectrum of a 2:1 mixture of $\frac{5}{6}$ and $\frac{6}{6}$ in deuteriotoluene at 90°C led to a 30% decrease in the intensity of the methyl group signal of $\zeta_{\mathcal{A}}$.
- 13. D. Baudry, M. Ephritikhine, H. Felkin, and R. Holmes-Smith, J.Chem.Soc., Chem.Commun., 1983, 788.
- 14. D. Baudry, M. Ephritikhine, and H. Felkin, J.Chem.Soc., Chem.Commun., 1980, 1243.
- 15. D. Baudry, M. Ephritikhine, and H. Felkin,J.Chem.Soc.,Chem.Commun., 1982, 606.

(Received in France 15 January 1984)